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Abstract: We evaluate the use of two different model formulations by proposing a modeling framework which
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models are suitable statistical tools to be fitted to many available panel data in various applicative cases. The pro-
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of a public organization by showing how the results can help policy makers.
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1 Introduction
In the following we show the use of two different
kinds of latent variable models tailored for panel data.
This type of use of such two models is relatively new
in the literature of stochastic frontiers models. We de-
scribe how their formulation is especially appropriate
when the interest lays on an ordinal response variable
which categories are grouped of a finer scale. The
latter is the case of an original continuous response
which is suitable discretized. We recall some defini-
tion of the µ-th sample quantiles and that of the µ-th
sample quantity quantile. We show that that the pa-
rameterization adopted for the distribution of each re-
sponse variable based on global logits has many prop-
erties and interesting features in the context of phe-
nomena evolving in time.

The paper is divided into two main parts. In the
first we introduce the models and the notation and we
state some relations related to the quantiles and quan-
tity quantiles of a distribution. Then, we summarize
some model features and illustrate some connections
with the order statistics (David, 1970); secondly we
summarize same details of the maximization proce-
dures for both model formulations based on the log-
likelihood. In the third section, we show some facil-
ities of the available software to estimate the models

in the R environment by considering a case study re-
lated to the estimation of technical efficiency. Then,
we provide some conclusions.

2 Notation and specification of the
proposed models

2.1 Background settings and notation

With reference to a sample of n units observed at T
time occasions, let yit be the ordinal response variable
for unit i at occasion t. Let the number of categories
denoted by J , and let xit be a corresponding col-
umn vector of covariates, with i = 1, . . . , n and t =
1, . . . , T . We denote by yi = (yi1, . . . , yiT ) the vec-
tor of response variables and by Xi = (xi1 · · ·xiT )
the matrix of time-varying and time-constant covari-
ates for unit i.

The model we formulate is based on the assump-
tion that yit = G(y∗it), where y∗it follows the model

y∗it = αit + x
′
itβ + ηit, t = 1, . . . , T,

for i = 1, . . . , n, with ηit being independent er-
ror terms with a standard logistic or a standard normal
distribution, and G(·) is a link function which mod-
els the relationship between each response variable yit
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and the corresponding latent variable αit and the vec-
tor of covariates xit. In such a case, it is a function of
cut-points µ1 ≥ · · · ≥ µJ−1 and it can be formulated
as

G(y∗) =


1 y∗ ≤ −µ1,
2 −µ1 < y∗ ≤ −µ2,
...

...
J y∗ > −µJ−1.

The basic assumptions of the model are that for every
sample unit i, y∗it, . . . , y

∗
iT are conditionally indepen-

dent given (αi1, . . . , αiT ) andXi.
Due to the induced ordinal nature of the response

variable we assume

log
p(yit ≥ j|αit,xit)
p(yit < j|αit,xit)

= µj + αit + x
′
itβ, (1)

with i = 1, . . . , n, t = 1, . . . , T, j = 2, . . . , J . These
parameterization is based on global logits for the con-
ditional distribution of each response variable and it is
particularly suitable as we deal with an underling con-
tinuous outcome which is suitable discretized (Mc-
Cullagh, 1980). Note that, the effect of the covariates
and of the unobserved individual parameters do not
depend on the specific response category.

This model is appropriate for those responses
which are derived from an original continuous re-
sponse variable at each time, for example when the
interest lies in characterizing the distribution in terms
of quantiles. In fact the µ-th quantile µ ∈ (0, 1) of a
continuous random variable with density function fy
and distribution function Fy is defined as any num-
ber such that Fy(ξµ) = µ. The µ-th quantile func-
tion of Y supposing that fy is strictly positive on the
whole support of Y is defined as the µθ = F−1Y (µ) for
µ ∈ (0, 1). Then, the µ quantile for the random vari-
able Y is defined by a minimization of an appropriate
loss function, see among others Koenker and Basset
(1978). These authors show that the loss function can
also be replaced by the empirical distribution function

Fn(y) = n−1
n∑
i=1

I(yi ≤ y).

When the interest is considering the first-moment dis-
tribution that is

QY (y) =

∫ y

0

t

µ
fY (t)dt

we are interested to the share of the total amount of the
variable produced to the population with level of Y no
greater than y. By considering the quantile function
correspondent to the first incomplete moment defined
asQ−1Y (µ) for µ ∈ (0, 1) we are led to what we call in

the Italian literature quantity quantile for fixed µ, see
among others Radaelli and Zenga (2008). They are
widely used in the studies of income and wealth dis-
tribution, see among others Kleiber and Kotz (2003).

If we are dealing with a random sample of
Y1, . . . , Yn and we consider the n sorted observations
from Y the sample estimator is the sample quantity
quantile defined as

η̂µ = inf{y(i) : Q̂(y(i)) ≥ µ}

where

Q̂(b) =

∑
i:yi≤b yi

T

and T denotes the total amount. Therefore as showed
by Radaelli and Zenga (2008) in order to obtain the
µ-th sample quantity quantile the observations y(i), ar-
rayed by increasing size, are summed until at least the
share µ of the total is reached. It can be shown that
the quantity quantiles of a given distribution F are the
ordinary quantiles of another distribution G obtained
from F by applying another suitably chosen function,
for example the Lorenz function

L(p) =
1

E[Y ]

∫ p

0
F−1(t)dt

for p ∈ [0, 1].

2.2 Models details

The proposed approach extends the results on the
quantity quantiles illustrated above to the cases of lon-
gitudinal data when repeated observations at different
time occasions are available for the same subject. We
conceptualize the model by including subject specific
random effects and by modeling them according to
two different types of formulations both relaying on
the first order approximation of the underlying distri-
bution.

In the following we illustrate the use two differ-
ent types of distribution of the latent variable. The
discrete latent process formulation assumes that, for
all i, αi = (αi1, . . . , αiT ) follows a first-order ho-
mogenous Markov chain with k states denoted by
ξ1, . . . , ξk. This chain has initial probabilities πh and
transition probabilities πh1h2 , with

πh = p(αi1 = ξh), h = 1, . . . , k,

πh1h2 = p(αi,t−1 = ξh1 , αit = ξh2),

where h1, h2 = 1, . . . , k, t = 2, . . . , T . It is as-
sumed that every αit is conditionally independent of
αi1, . . . , αi,t−2 given αi,t−1, but apart from this as-
sumption, the distribution of αi is unconstrained. To
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ensure identifiability we require that
∑
h πh = 1 and∑

h2 πh1h2 = 1, h1 = 1, . . . , k and one component of
the support point is constrained to be zero. In such
case a latent Markov (LM) model (Bartolucci, Far-
comeni, Pennoni, 2013) with covariates results where
the covariates affect the measurement model.

The above result is a generalization to the latent
variable context of the very well known result that if
we consider the order statistics y(1) ≤ y(2) ≤ . . . ≤
y(n) in a sample drawn from any continuous distribu-
tion, whose cumulative density function is strictly an
increasing function of y, then, the random variables
Y(n), Y(n−1), . . . , Y(1) form a Markov chain so as the
random variables Y(1), Y(2), . . . , Y(n). Therefore, for a
random sample of n continuous distributions the con-
ditional distribution of Y(s) given Y(r) where (r < s)
is just the distribution of the (s − r)-th order statistic
in a sample of (n − r) drawn from the original dis-
tribution truncated at the left at y = y(r). A set of
independences also holds when the original distribu-
tion is Gaussian as in the following.

The continuous latent process formulation
assumes that the hidden response variables in
y∗i1, . . . , y

∗
iT are conditionally independent given Xi

and the latent process αi = (αit, . . . , αit). Another
hypothesis is that every hidden variable and then
every response variable, only depends on αit and xit
and that the latent process αi has distribution given
by a mixture of k AR(1) stochastic processes with
common variance σ2. According to the latter, we
assume the existence of a discrete latent variable ui,
for i = 1, . . . , n, having a distribution with k support
points and mass probabilities π1, . . . , πk such that,
when ui = h we assume that

αi1 = ξh + ηi1, i = 1, . . . , n,

and that

αit = ξh + (αi,t−1 − ξh)ρh + ηit

√
1− ρ2h,

where i = 1, . . . , n, t = 2, . . . , T, and ηit ∼
N(0, σ2) for all i and t and (ξh, ρh) are parameters
which for h = 1, . . . , k are estimated jointly with
the common variance. To ensure identifiability of the
model, we require that ξ1 = 0 or,

∑
h ξhπh = 0. We

observe that when h = 1, the model is the latent auto-
regressive model proposed by Chi and Reinsel (1989)
and Heiss (2008), when h > 1 it is the mixture latent
auto-regressive model proposed by Bartolucci, Bacci
and Pennoni (2014). A summary of the parameters of
the two proposed formulations is provided in Pennoni,
Vittadini (2013).

It is important to mention that the choice between
the two model formulations has important method-
ological implications and it depends on the problem

of study. However, as showed later those two formu-
lations may be easily compared in oder to choose the
most appropriate model for the data. The proposed
model framework can be useful in many practical ap-
plications to real data from different sources.

2.3 Main estimation features

An interesting feature of the proposal above is that
likelihood-based estimation of the model parameter is
feasible as for a sample of n independent units it is
possible to consider the model log-likelihood of the
form

`(θ) =
n∑
i=1

log p(yi|Xi)

where θ is the vector of all free parameters affect-
ing the manifest distribution of the response vector yi
given all the observable covariatesXi.

The maximum likelihood estimation of the model
parameters in the case of a discrete formulation
of the random process is performed by means of
appropriately modify version of the Expectation-
Maximization algorithm which first was implemented
by Baum and Petrie in 1966 and also it is also known
as Baum-Welch algorithm. It requires to maximize
the conditional expected log-likelihood of the com-
plete data which is formulated as the sum of three
components representing the conditional distribution
of the response variables given the covariates and the
marginal distributions of the latent process. More de-
tails on the quantities involved in the estimation pro-
cedures may be found in Bartolucci, Farcomeni, Pen-
noni, (2013).

In the case of the continuous latent formulation
of the random process a numerical optimization al-
gorithm is used. The manifest distribution of the re-
sponse variables given the covariates is expressed as a
T -dimensional integral which is approximately com-
puted by a quadrature method based on a series of q
nodes properly chosen. Hence, in such a case, the
computational burden increases according to the num-
ber of quadrature points chosen. For more details see
Pennoni, Vittadini (2013) and Bartolucci, Bacci, Pen-
noni (2014). We also notice that the expression we
compute for the manifest distribution of the response
variables given the covariates based on q nodes is the
same as that we get for the discrete random effect for-
mulation based on q states. The manifest distribution
is computed according to the recursions developed in
the hidden Markov literature (Rabiner, 1990) and de-
scribed in matrix notation by Bartolucci, Farcomeni,
Pennoni (2013).

We provide also how to compute the standard er-
rors for the estimated parameters by relaying on nu-
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merical methods or on exact computational methods.
One important result which exploits the observed in-
formation matrix is that of the missing information
principle proposed by Tanner (1996) which allows for
the estimated values with small extra code over that
required by the maximum likelihood estimation. It
is based on the results due to Orchard and Woodbury
(1972) and Louis (1982) by which the observed infor-
mation is equal to the complete information minus the
missing information. Pennoni (2014) following Ki-
ivieri, Speed and Carlin (1984) suggests this approach
by implementing it for the case of directed Gaussian
acyclic graphical models with one hidden variable.

Another aspect of the proposal is the use of the
goodness of fit indexes for model selection. In the
case of a discrete formulation for the random param-
eters the Bayesian Information Criterion (Schwarz,
1978) has the advantage of considering the maximum
log-likelihood of the model and to select a parsimo-
nious model. It is based on the index

BIC = −2`(θ̂) + g log(n) (2)

where `(θ̂) denotes the maximum log-likelihood of
the model of interest and g is the number of parame-
ters. Sometimes it may be not always the best choice
but as stressed in the simulation study performed by
Bacci, Pandolfi, Pennoni (2014) it performs properly
in many simulated scenarios.

On the other hand, in the case of the mixture la-
tent auto-regressive model the strategy for the choice
of the number of components is more time consum-
ing. For each component of the mixture the number
of nodes have to be increased until the maximum of
`(θ) does not significantly change with respect to the
previous value obtained with q nodes. An optimal
strategy is by increasing them by 10 and take the dif-
ference less than than 0.001. Then, once the optimal
number of quadrature points are chosen, the model is
estimated for an increasing number of states.

Another goal of the proposal is that the subject
specific predictions may be gained for both models.
For the case of the latent Markov model these are
computed on the basis of the following expression:

α̃it =
k∑

h=1

= π̂∗hf̂
(h)

for i = 1, . . . , n, t = 1, . . . , T where π̂∗h denotes
the estimate of the stationary probability for the h la-
tent state which depends on the transition probabilities
π̂h1,h2 and f̂ (h) denotes the estimated posterior condi-
tional distribution of the latent variables.

For the case of the mixture latent auto-regressive

model these are computed as:

α̃it =
k∑

h=1

q∑
m=1

̂(wihzimt)(ξ̂h + νmσ̂),

for i = 1, . . . , n, t = 1, . . . , T , where ̂wihzimt is the
posterior density that subject i moves from state m1

to state m2 at occasion t given that µj = h and vm
denotes the m-th of the knots.

In such a way, it is possible to get some reliable
estimates for each subject which are based on the ob-
served covariates and on the selected clusters of the
models. In fact, the proposed methodology allows
also the graphical representation of such average pre-
dictions. This is an additional feature of the models
which can be adopted also for policies or interventions
in critical situations.

3 A case study and software imple-
mentation

The proposed models may be easily applied to real
panel data under the statistical environment R (R Core
Team, 2013). In the application proposed in Pennoni,
Vittadini (2013) we consider a typical case which can
be easily generalized to other settings requiring, for
example, the evaluation of technical efficiency.

We consider the ratio between two dependent
continuous variables of interest in the specific setting
of the evaluation of the expenditures of public hos-
pitals within a new reimbursement scheme adopted
recently in one of the richest Italian region. In this
framework, it common to consider two mainly mea-
sures of efficiency (see among others Hollingsworth,
2003 and Rosko and Mutter, 2007) which are the
yearly number of discharges and the yearly revenues.
The revenues are related to the number of discharges
according to a perspective hospital’s reimbursement
scheme which has been recently introduced. The re-
imbursement is given on the basis of a tariff that the
government sets at the beginning of each year which
is related to groups of diagnosis. The rate received
by the hospital for each admission depends on the pa-
tient’s diagnosis. It is well stated in the literature that
the system may give rises to some inappropriate be-
haviors made by the head of each yard or by the head
of the hospital such that there is a negative trade-off
between revenues and readmission and they have to
be considered jointly to evaluate efficiency.

Therefore, in Pennoni, Vittadini (2013) we take
into account the ratio between the yearly revenues
and the yearly number of discharges for the data re-
ferred to the full population of patients for the general
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medicine ward. The latter is the one with the high-
est discharges and number of beds compared to the
other wards in the region. We refer to this outcome as
per capita revenue. We consider six available inputs
(or covariates) which are time-varying: the number of
beds of the hospital, the yearly hours of activity of
the hospital’s physicians, nurses, surgery rooms and
of other employees which are not directly related with
the surgery primary activity of the hospitals. In Ta-
ble 1 and Table 2 we report the average values of each
variables for every available year from 2008 to 2011
of the 110 hospitals considered in the analysis. It is in-
teresting to note that the per capita revenues increase
even if the average values of the input decreases over
the years.

The use of the quantity quantiles allows us to in-
vestigate changes in the per capita revenues at inter-
esting points of the distributions. Then we consider
as response variable for the model in (1) the ordinal
variable having four levels corresponding to the quan-
tity quantiles of order 0.25, 0.5 and 0.75. The resulted
categories of the derived ordinal variable are denoted
as ‘low’, ‘medium’, ‘high’ and ‘very high’. In Table
3 we show the empirical transition matrix of the re-
sponse variables. Each row of this matrix shows the
percentage frequencies of the four response categories
at occasion t given the response at occasion t−1, with
t = 2, . . . , T .

Table 1: Average values of the outcome and of the
input variables over the first two time occasions.

Year
V ariable 2008 2009
pre capita revenue 2813.86 2886.57
beds (number) 45.51 45.39
physicans (hours) 245,597.44 247,104.11
nurses (hours) 481,504.42 485,475.39
others (hours) 460,843.22 459,612.36
surgey rooms (hours) 7,691.40 7,675.94

Table 2: Average values of the outcome and of the
input variables over the last two time occasions.

Year
V ariable 2010 2011
pre capita revenue 3011.58 3074.65
beds (number) 44.78 44.10
physicans (hours) 214,122.28 206,485.25
nurses (hours) 398,980.55 345,871.21
others (hours) 309,272.25 156,393.88
surgey rooms (hours) 8,144.78 7,940.05

Table 3: Conditional empirical distribution of the re-
sponse variable at time t given the response at time
t− 1, with t = 2, . . . , T (percentage frequencies).

Ratio at t
Ratio at t− 1 low medium high very high
low 76.7 20.0 3.3 0.0
medium 20.7 48.3 24.1 6.9
high 3.4 31.0 44.8 20.7
very high 0.0 0.0 26.7 73.3

The proposed models may be estimated in a
fast and easy way by a freely available package
LMest (Bartolucci, Pandolfi, Pennoni 2014) in an im-
proved version with the respect to previous one which
is available from http://cran.r-project.
org/. The choice of the R environment for data anal-
ysis and graphics provides a good degree of control
and the user can also compare the models proposed
above with other types of model proposed in the liter-
ature of stochastic frontier models such as those im-
plemented on the R package called Benchmaking.

The main function which makes the applications
of the model above very easy is called est lm
cov manifest. It requires to specify a matrix de-
sign for the response configurations according to the
time occasions considered, the matrix of the input and
the number of levels of the response variables which
varies according to the chosen order of the quantity
quantiles. Then, it requires to specify the number of
states for which the model has to be fitted. The in-
put mod = 0 allows for the selection of the model
with a discrete distribution for the random effects to
be estimated. The input mod = 1 allows for the
model with a continuous distribution of the random
effects. In the latter, the number of support points
of the auto-regressive structure of the stochastic pro-
cesses are specified by the input q to be set equal to an
integer number. The other argument needed is the in-
put out se = TRUE which allows to calculate the
information matrix and the standard errors for the co-
efficients in model (1).

The main feature of the proposed approach com-
pared with other standard models which measure tech-
nical efficiency is that the hospital can vary on the re-
sponse variable because of the unobserved covariates
such as general manager ability. The latter is a source
of the so called unobserved heterogeneity which is im-
portant to take into account in many contexts of study.
In this one, it is important as the head of the ward is
the indeed lawfully responsible for all the activities
performed in the hospital and we expect that his/her
experience may influence the budgetary of the hospi-
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tal.
As in other approaches we consider the translog

function for the covariates (Christensen, Jorgenson,
and Lau, 1973) in the estimation procedure. In gen-
eral, when we are dealing with an ordinal response
variable related to quantiles or to quantity quantiles as
illustrate in Section 1 and we estimate the models with
a discrete latent variable formulation as in Section 2.2
the optimal number of states is equal to the number
of levels of the response variable. We estimate such
model to the data at hand for an increasing number
of k and each one is examined by the means of the
BIC criterion. For the available data the model with
k = 4 resulted in a BIC value equal to 819.891 when
a log-likelihood has a maximum of -355.128 with 23
parameters.

Then, we specify the continuous latent variable
formulation and we estimate the mixture latent auto-
regressive model for an increasing number of quadra-
ture points for each number of mixture components
from 1 to 3. We select the number of quadrature points
for the mixture latent auto-regressive model by means
of the strategy illustrated in Section 2.3. We choose
the following values: q = 91 for k = 1, q = 81
for k = 2 and q = 111 for k = 3. We consider
the values of BIC for each value of k according to the
chosen value of q. Then, the BIC leads to choose one
mixture component that is the latent auto-regressive
model. For the latter the log-likelihood at the maxi-
mum has value equal to -361.31 and the BIC is equal
to 770.327 with 10 parameters.

In Table 4 we report the estimated parameters for
both models with their standard errors. On the ba-
sis of the t-statistics that may be computed for the re-
gression coefficients, we conclude that the first four
covariates are significant on the latent Markov model
with four latent states. On the other hand, while re-
taining the same sign only the first two covariates
are significant under the mixture latent auto-regressive
model with one component. The effect of the num-
ber of beds and of the working hours of physicians
and nurses is positive, while the effect of working
hours of the other staff of the hospital is negative, in-
dicating that in the wards considered the main impor-
tant features to explain efficiency are the first three.
We conclude that the dimension of the hospital has
a positive effect on the efficiency and that the hospital
staff which is not directly related with the treatment of
the patient may contribute to inefficiencies. The esti-
mated initial probabilities relative to the chosen latent
Markov model with k = 4 are the following: π̂1 =
0.22, π̂2 = 0.31, π̂3 = 0.28, π̂4 = 0.19. Under the
mixture latent auto-regressive model with one compo-
nent all the hospitals are in one latent class with high
auto-correlation coefficient (ρ̂1 = 0.911) which is sta-

Table 4: Estimates of the parameters referred to the
cut-points and the regression coefficients in equation
(1), together with the corresponding standard errors
for both types of models to which we refer as LM(4)
and MLAR(1).

LM(4) MLAR(1)
µ̂1 -47.073 -68.456
µ̂2 -52.617 -76.136
µ̂3 -58.841 -83.523
β̂1 beds 1.714 3.878

(0.547) (1.707)
β̂2 physicians 2.478 3.489

(0.590) (1.222)
β̂3 nurses 2.548 2.332

(0.721) (1.332)
β̂4 others -1.259 -1.085

(0.410) (0.687)
β̂5 surgery rooms 0.137 0.552

(0.283) (0.637)

tistically significant (s.e. 0.361) and σ2 = 14.556.
Due to the adopted parameterization the cut-

points correspond to different levels of the propen-
sity of the hospital to have high levels of efficiency.
Therefore, we allow for different ways to detect ef-
ficiency changes. The value of the first cut-point is
higher then the others, thus the first latent state corre-
sponds to those hospitals with the highest propensity
towards efficiency. The fourth latent state corresponds
to those hospitals with the lowest propensity to be ef-
ficiency. Hence, they represents clusters of hospitals
sharing the same propensity towards efficiency gains
over the four year period considered.

Regarding the distribution of the latent process
for the LM(4) model in Table 5 we report the esti-
mates of the transition probability matrix.

Table 5: Estimates of the transition probabilities
πh1h2 under the LM(4) model.

π̂h1h2

h2 h1 = 1 h1 = 2 h1 = 3 h1 = 4

1 0.911 0.042 0.047 0.000
2 0.064 0.936 0.000 0.000
3 0.000 0.037 0.907 0.056
4 0.000 0.000 0.089 0.911

Looking at the estimates of the parameters of the
transition matrix we can see the evolution of the prob-
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abilities of each state. In this way, we dispose of a
characterization of the pathways of each of the four
groups and we capture the behavior in a flexible man-
ner.The matrix is not symmetric and the persistence
in the same latent state for the entire period is high.
The hospitals which have a medium/high level of ef-
ficiency i.e which are in latent state 2, in the previous
year tend to become more efficient in the next year
and those less efficient i.e. which are in latent state 4,
in the previous year, tend to be more efficient as time
goes.

Another feature of the models above is that by
specify an additional input to the main function which
estimate the models such as output = TRUE we
get the most likely sequence for all sample units.
Hence, it is also possible to dispose of a prediction
of the individual effect for every hospital at each time
occasion on the basis of the parameters estimates and
on the available covariates (inputs). Once they are de-
picted, for example, it is interesting to note those pre-
dicted profiles trajectories which are less regular then
others so that it is possible to quickly identify those
hospitals with suddenly changes and to correct in ad-
vance some opportunistic behaviors of the hospitals
in a cost effective strategy. By the inspection of the
graph of the predicted values we can notice if the sin-
gle predicted profile trajectories are less regular under
one model compared to the other. Thus, this means
that we can detect in a more appropriate way with this
model compared to the other the changes observed in
the hospitals which are due to events which are not
observed through the covariates. Moreover, according
to them, it is also possible to rank the structures from
the best to the worst performer in terms of potentially
efficiency gains.

4 Conclusion
In this paper, we have proposed the use of two special
kinds of latent variable models for analyzing longi-
tudinal data when the ordinal response variables are
derived as a grouping of a different scale. First, we
show that the model formulation we derive is suit-
able when the responses are derived from an original
continuos response variable such as when the inter-
est lies in characterizing the distribution in terms of
quantiles. Then, we show the two model formula-
tions take into account that in this way we are deal-
ing with order statistics. The first one assuming a dis-
crete distribution gives rise to a latent Markov model
which is not very complex to fit. It is more natural
in many contexts and very suitable for classification
even if the number of parameters increases with the
number of latent states. The second model formula-

tion relies on a continuous distribution for the unob-
served heterogeneity. It gives rise to a mixture latent
auto-regressive model which is more complex to fit.
Maximum likelihood estimation of the model param-
eters is performed by a joint use of the Expectation-
Maximization algorithm and of the Newton-Raphson
algorithm. Standard errors for the parameter estimates
are also obtained. The number of latent states are
selected by considering the BIC index for the latent
Markov model and by an appropriate strategy for the
mixture components. We present a way to derive es-
timated predictions of the individual effects for every
unit at each time occasion on the basis of the param-
eter estimates. In the last section the models are ap-
plied to real panel data to investigate technical ineffi-
ciencies of public hospitals of one of the richest Ital-
ian region. The response variable of interest is ob-
tained by considering the revenues and the number
of discharges which are relevant in the reimbursement
scheme adopted by the government of the region.

By the use of this case study we also illustrate
one of the main function of the R package LMest
which provides the facilities to estimate the proposed
models. We show the flexibility of the models and
how they can be useful to monitor the evolution of
the performance of the selected clusters of hospitals
over time which share the same propensity towards
efficiency gains. The results gained by the application
of the proposed models may be used to support deci-
sion makers to improve or to intervene on the process
under study.

Acknowledgements: We acknowledge “Finite mix-
ture and latent variable models for causal inference
and analysis of socio-economic data” (FIRB - Fu-
turo in ricerca) funded by the Italian Government
(RBFR12SHVV). F. Pennoni also thanks the finan-
cial support of the STAR project “Statistical models
for human perception and evaluation”, University of
Naples Federico II.

References:

[1] Aigner, D., Lovell, C. A. K. and Schmidt, P.
(1977), Formulation and estimation of stochas-
tic frontier production function models, Journal
of Econometrics, 36, 21-37.

[2] Bacci, S., Pandolfi, S., and Pennoni, F. (2014). A
comparison of some criteria for states selection
in the latent Markov model for longitudinal data.
Advances in Data Analysis and Classification, 8,
125-145.

[3] Bartolucci, F., Farcomeni A., Pennoni, F. (2014).
Latent Markov models: a review of a general

Advances in Mathematics and Statistical Sciences

ISBN: 978-1-61804-275-0 104



framework for the analysis of longitudinal data
with covariates, with discussion, Test, 23, 433-
465.

[4] Bartolucci F, Pandolfi S., Pennoni F. (2014).
Fit Latent Markov models in basic ver-
sions. R package version 2.0. http://CRAN.
R-project.org/package=LMest.

[5] Bartolucci, F., Bacci, S., Pennoni, F. (2014).
Longitudinal analysis of self-reported health sta-
tus by mixture latent auto-regressive models,
Journal of the Royal Statistical Society: Series
C, 63, 267-288.

[6] Bartolucci, F., Farcomeni, A., Pennoni, F.
(2013). Latent Markov Models for Longitudinal
Data, Chapman and Hall/CRC press, Boca Ra-
ton.

[7] Baum, L., Petrie, T., Soules, G., and Weiss,
N. (1970). A maximization technique occurring
in the statistical analysis of probabilistic func-
tions of Markov chains. Annals of Mathematical
Statistics, 41, 164 -171.

[8] Chi, E. and Reinsel, G. (1989). Models for lon-
gitudinal data with random effects and AR(1) er-
rors, Journal of the American Statistical Associ-
ation, 84, 452-459.

[9] Christensen, L., Jorgenson, D., Lau, L. (1973).
Transcendental logarithmic production frontiers,
Review of Economics and Statistics, 55, 28–45.

[10] Colombi, R., Forcina, A. (2001). Marginal
regression models for the analysis of posi-
tive association of ordinal response variables,
Biometrika, 88, 1007–1019.

[11] David H. A. (1970). Order Statistics, Wiley,
New York.

[12] Heiss, F. (2008). Sequential numerical integra-
tion in nonlinear state space models for mi-
croeconometric panel data, Journal of Applied
Econometrics, 23, 373-389.

[13] Herwartz, H., Strumann, C. (2014). Hospi-
tal efficiency under prospective reimbursement
schemes: an empirical assessment for the case
of Germany, European Journal of Health Eco-
nomics, 15, 175-186.

[14] Hollingsworth, B. (2003). Non-parametric and
parametric applications measuring efficiency in
health care, Health care management science, 6,
203-218.

[15] Green, W. (2005). Reconsidering heterogeneity
in panel data estimators of the stochastic frontier
model, Journal of Econometrics, 126, 269–303.

[16] Greene, W. (2009). The econometric approach
to efficiency analysis, in H. O. Fried, C. A. K.

Lovell and S. S. Schmidt (Eds), The measure-
ment of productive efficiency techniques and ap-
plications, Oxford University Press: Oxford, 92-
251.

[17] Kiiveri H. T., Speed T. P., Carlin J. B. (1984).
Recursive causal models. J. Austral. Math. Soc.
Ser. A, 36, 30-52.

[18] Kleiber C., Kotz S. (2003). Statistical Size Dis-
tributions in Economics and Actuarial Sciences,
Wiley Series in Probability and Statistics. Wiley,
New York.

[19] Koenker R, Bassett G. J. (1978). Regression
quantiles. Econometrica, 46, 33-50.

[20] Kumbhakar, S. C., Lien, G. and Brian J. (2014).
Technical efficiency in competing panel data
models: a study of Norwegian grain farming,
Journal of Productivity Analysis, 41, 321-337.

[21] Louis T. A. (1982). Finding the observed in-
formation matrix when using the EM-algorithm.
Journal of the Royal Statistical Society, Series B,
44, 226-233.

[22] McCullagh, P. (1980). Regression models for or-
dinal data (with discussion). Journal of the Royal
Statistical Society, Series B, 42, 109–142.

[23] Pennoni, F. (2014). Issues on the estimation of
latent variable and latent class models. Schol-
ars’ Press, Saarbucken.

[24] Pennoni, F., Vittadini, G. (2013). Two competing
models for ordinal longitudinal data with time-
varying latent effects: an application to evaluate
hospital efficiency. QdS, Journal of methodolog-
ical and applied statistics, 15, 53-68.

[25] Orchard T., Woodbury M. A. (1972). A Missing
Information Principle: Theory and Applications.
In Proceedings of the 6th Berkeley Symposium
on Mathematical Statistics and Probability, 1,
697-715.

[26] R Development Core Team (2013). R: A lan-
guage and environment for statistical comput-
ing, R Foundation for Statistical Computing.

[27] Rabiner, L. (1990). A tutorial on Hidden Markov
models and selected applications in speech
recognition. Readings in speech recognition, 53,
267-296.

[28] Radaelli, P., Zenga, M (2008). Quantity quan-
tiles linear regression, Statistical methods and
applications, 17, 455-469.

[29] Rosko, M.D., Mutter, R. L. (2007). Stochastic
frontier analysis of hospital inefficiency: a re-
view of empirical issues and an assessment of
robustness, Medical care research and review,
65, 131–166.

Advances in Mathematics and Statistical Sciences

ISBN: 978-1-61804-275-0 105



[30] Schwarz, G. (1978). Estimating the dimension
of a model, Annals of Statistics, 6, 461-464.

[31] Tanner M.A. (1996). Tools for statistical infer-
ence. New York: Springer.

[32] Zucchini, W. and MacDonald, I. L. (2009). Hid-
den Markov Models for time series: an introduc-
tion using R. Springer-Verlag, New York.

Advances in Mathematics and Statistical Sciences

ISBN: 978-1-61804-275-0 106




